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The successful development of motor neuroprosthetic devices hinges on the ability to accurately and reliably decode signals from the
brain. Motor neuroprostheses are widely investigated in behaving non-human primates, but technical constraints have limited progress
in optimizing performance. In particular, the organization of movement-related neuronal activity across cortical layers remains poorly
understood due, in part, to the widespread use of fixed-geometry multielectrode arrays. In this study, we use chronically implanted
multielectrode arrays with individually movable electrodes to examine how the encoding of movement goals depends on cortical depth.
In a series of recordings spanning several months, we varied the depth of each electrode in the prearcuate gyrus of frontal cortex in two
monkeys as they performed memory-guided eye movements. We decode eye movement goals from local field potentials (LFPs) and
multiunit spiking activity recorded across a range of depths up to 3 mm from the cortical surface. We show that both LFP and multiunit
signals yield the highest decoding performance at superficial sites, within 0.5 mm of the cortical surface, while performance degrades
substantially at sites deeper than 1 mm. We also analyze performance by varying bandpass filtering characteristics and simulating
changes in microelectrode array channel count and density. The results indicate that the performance of LFP-based neuroprostheses
strongly depends on recording configuration and that recording depth is a critical parameter limiting system performance.

Introduction
A central challenge for the treatment of a wide range of brain
disorders involves developing sensors of brain activity that can
help to restore lost function (Tresco and Winslow, 2011). Brain-
machine interfaces (BMIs) use implanted electrode arrays to re-
store lost motor function by decoding motor intention (Schwartz
et al., 2006; Hatsopoulos and Donoghue, 2009; Scherberger,
2009; Andersen et al., 2010; Gilja et al., 2011). Presently, the best-
performing BMIs are based on neuronal spike recordings (Hoch-
berg et al., 2006; Santhanam et al., 2006; Velliste et al., 2008;
Aggarwal et al., 2009; Ganguly et al., 2011; Simeral et al., 2011),
however, local field potentials (LFPs) offer promise as a robust,
reliable alternative to spike signals (Pesaran et al., 2002; Andersen
et al., 2004; Scherberger et al., 2005; Zhuang et al., 2010; Bansal et
al., 2011). Unlike recordings of action potentials, which are gen-
erated by individual neurons, LFPs are a continuous, pooled
measure of neural activity in the vicinity of the recording elec-
trode (Xing et al., 2009) and are present in the absence of action

potential recordings (Bokil et al., 2006). Therefore, LFP activity
has the potential to offer greater signal reliability than spike
recordings.

Current LFP-based systems have not been optimized for LFP
recordings, and it is unknown whether or how the performance
of these systems is limited by the design specifications of chron-
ically implanted microelectrode arrays. For example, although it
is known that the properties of LFP recordings depend on the
depth of the recording electrode within cortex (Xing et al., 2009;
Maier et al., 2010), the relationship between recording depth and
the performance of LFP-based BMIs has not been previously in-
vestigated. The use of fixed geometry microelectrode arrays,
rather than movable microelectrode arrays, discourages such in-
vestigation because optimizing the properties of recordings in-
volves testing each recording configuration with a new implant.
As a result, optimizing LFP-based neural sensors has been
impractical.

Here, we use a chronically implanted microelectrode array
with 32 independently movable electrodes to optimize the decod-
ing of movement goals from neural activity (Gray et al., 2006;
Gray and Goodell, 2007, 2009). We recorded spiking and LFP
activity from prefrontal cortex while two monkeys performed a
memory-guided saccade task. Over a span of months, we system-
atically advanced the depth of the recording electrodes through
the prearcuate gyrus by up to 100 �m each day in both animals.
For each recording session, we decoded the goal of the saccadic
eye movement from neuronal activity during the memory period
before the saccade. The results indicate that recording depth is a
critical parameter that constrains the performance of LFP-based
neural interfaces. We present strategies for improving perfor-
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mance by optimizing recording depth, bandpass filtering charac-
teristics, and microelectrode array properties such as channel
count and density. A preliminary report of these data was pre-
sented in (Markowitz et al., 2011).

Materials and Methods
Experimental preparation
Two adult male rhesus macaques (Macaca mulatta) participated in the
study (Monkey A and Monkey S, 9.5 kg and 8.4 kg, respectively at the
start of the experiments). Both animals had been used previously in other
experiments studying eye movements, and identical training protocols
were used for both animals (see Memory-guided saccade task). Before
behavioral training, each animal was instrumented with a head restraint
prosthesis to allow fixation of head position and tracking of eye position.
Each monkey was behaviorally trained for several weeks in an unlit
sound-attenuated room (ETS-Lindgren). Following behavioral training,
we implanted a low-profile recording chamber (Gray Matter Research)
in a craniotomy made over the right prearcuate cortex of each animal
using image-guided stereotaxic surgical techniques (Brainsight, Rogue
Research). We also installed a stainless steel ground screw over visual
cortex to provide a non-local point of reference. A semichronic micro-
electrode array microdrive (SC32-1, Gray Matter Research) was then
inserted into the recording chamber and sealed (see Microelectrode mi-
crodrive design). All surgical and animal care procedures were approved
by the New York University Animal Care and Use Committee and were
performed in accordance with the National Institute of Health guidelines
for care and use of laboratory animals.

Memory-guided saccade task
Each monkey performed a memory-guided saccade to one of eight tar-
gets for a liquid reward. All trials began with the illumination of a central
red square, on which the animal needed to fixate for a baseline period
(500 – 800 ms). A second red square, the “cue,” was flashed for 300 ms
after the baseline period to a peripheral location to indicate the target of
the saccade. After a delay period (0.7–1.2 s for Monkey A, 1–1.5 s for
Monkey S), the central fixation square was extinguished, providing the
go signal for the animal to saccade to the peripheral cue location. Within
100 –150 ms after the saccade, the cue reappeared and the animal had to
fixate on the red square for an additional 300 ms. On each trial, the target
was randomly presented at one location on a grid of eight possible loca-
tions spaced 10° around the central red square. Target locations were
interleaved trial-by-trial in equal proportions. During each behavioral
session, Monkey A performed 120 –150 memory-guided saccades, and
Monkey S performed 200 –250 saccades.

A trial was aborted if the monkey failed to align its gaze within 2° of the
center of the fixation or saccade targets. When an abort was detected, all
visual stimuli were extinguished immediately, no reinforcers were deliv-
ered, and the trial was restarted after a 1200 –1800 ms intertrial interval.
Both monkeys rarely aborted trials (4% for Monkey A, 5% for Monkey
S). Aborted trials were excluded from further analyses. Data reported
here were collected after at least 3 weeks of training on the memory-
guided saccade task.

Microelectrode microdrive design
All data reported here were obtained using a semichronic microelectrode
array microdrive, SC32-1 (Gray Matter Research). The SC32-1 is a mi-
cromanipulator system capable of independent bidirectional control of
32 microelectrodes. The system is designed to be chronically implanted
within a recording chamber system (Fig. 1a). Electrodes are spaced by 1.5
mm and each has a travel range up to 20 mm. Each actuator consists of a
lead screw fixed within a housing and an eccentric brass shuttle mounted
to the electrode (Fig. 1b). A complete turn of the lead screw advances the
electrode 125 �m.

Recording protocol
At the time of implantation, the initial position of each recording elec-
trode was recessed �1 mm within the drive. Electrodes were advanced
through a Silastic membrane in the recording chamber, the dura mater
and pia before entering the cortex. Action potentials were first recorded

at a median depth of �2–3 mm beyond their initial position (2.23 mm in
Monkey A; 3.04 mm in Monkey S). Electrodes were gradually advanced
between daily recording sessions (mean 34 �m/d in Monkey A; 100
�m/d in Monkey S) until action potentials were no longer present, indi-
cating passage into white matter. We obtained neural recordings by ad-
vancing the electrodes up to a median distance of 6 mm from their initial
position. Neural recordings during the performance of the behavioral
task were first obtained in Monkey A when clear multiunit activity was
present on all channels, i.e., at the top of cortex. In Monkey S, neural
recordings during behavioral task performance were initially obtained at
more superficial depths above the cortical surface, before multiunit ac-
tivity was present.

Data acquisition
Eye position was continuously monitored with an infrared optical eye
tracking system sampling at 120 Hz (ISCAN). Eye positions were digi-
tized at 1 kHz. Visual stimuli were presented on an LCD screen (Dell Inc.)
placed 34 cm from the subjects’ eyes. The visual stimuli were controlled
via custom LabVIEW (National Instruments) software executed on a
real-time embedded system (NI PXI-8184, National Instruments). Neu-
ral recordings were made with glass-coated tungsten electrodes (Alpha
Omega) with impedance 0.7–1.5 M� measured at 1 kHz (Bak Electron-
ics). Neural signals were preamplified (10� gain; Multi Channel Sys-
tems), amplified and digitized (16 bits at 30 kHz; NSpike, Harvard
Instrumentation Laboratory, LSB � 1 �V after preamplification), and
continuously streamed to disk during the experiment (custom C and
Matlab code).

LFP waveforms were computed from the broad-band activity by low-
pass filtering the raw, broad-band recording at 300 Hz and down-
sampling at 1 kHz. Multiunit firing rates were obtained by high-pass
filtering the raw data at 300 Hz, maintaining the original 30 kHz sam-
pling rate, and identifying threshold crossing events, as described below.
In later analyses, multiunit activity (MUA) is treated as a continuous
high-frequency voltage signal to enable direct comparison with LFP data.

Data analysis
Depth registration. To characterize decoding performance when all elec-
trodes are at corresponding cortical depths, we aligned the depth of
recordings across sessions. After the completion of all experiments and
all 32 electrodes had been advanced into white matter, we registered
previously measured absolute cortical depths to a common zero point
across the array (i.e., the cortical surface) using an iterative optimization
algorithm. First, for each channel, we estimated the variance of the LFP
signal from a 60 s recording obtained at each sampled depth while the

a

b

Figure 1. Microdrive design and implantation. a, Diagram of the microdrive after implanta-
tion. b, Diagram of a lead screw and electrode mounted to an eccentric shuttle. Counterclock-
wise rotation of the lead screw causes downward motion of the shuttle assembly.
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animal was sitting quietly. Once a complete profile of LFP variance versus
absolute depth was obtained, we performed a variance stabilizing trans-
formation to correct for minor differences in scale due to variable elec-
trode impedances across the array. This transformation involved
calculating the logarithm of the LFP variance at each depth and then
normalizing log variance data to range from 0 to 1 on each channel. Next,
we identified the alignment for each channel pair that minimized the
pairwise Euclidean distance between their normalized variance versus
depth profiles. To find this optimal alignment, we calculated the pairwise
Euclidean distance at vertical offsets ranging from �1 mm to �1 mm.
The offset with minimal pairwise Euclidean distance was labeled “opti-
mal.” To determine the best vertical offset for a given channel, we esti-
mated the optimal offset with respect to each of the other 31 channels,
and then calculated the mean of these values. Then we shifted the vari-
ance versus depth profile for each channel by half of its optimal mean
offset. This shift operation was performed in batch mode, with all elec-
trodes shifted simultaneously once all mean offsets had been calculated.
This entire procedure was repeated iteratively until no further shifts were
required. Results were inspected by calculating the array-averaged MUA
and LFP variance versus depth profiles and looking for inflection points
characteristic of sudden changes in activity at specific depths. We labeled
this inflection point zero cortical depth in both animals, and confirmed
its correspondence to the top of cortex by plotting the depths of all
observed spiking units across the array. In both animals, the inflection
point occurred just above the first observed spikes on all channels.

Spectrographic analysis. We estimated LFP power as a function of fre-
quency and time using multitaper spectral estimation (Mitra and Pesa-
ran, 1999) with 15 tapers, 20 Hz smoothing, and a 400 ms estimation
window. We selected this degree of smoothing to give reliable estimates
of LFP power on individual trials. When we reduced the degree of
smoothing, the increased variability in power estimates reduced decod-
ing performance.

Multiunit rate analysis. To identify multiunit spike events, we first
bandpass filtered the broad-band continuous raw recording from 300 to
5000 Hz. We then applied a 3.5 SD threshold to detect putative spike
events. All waveform peaks that exceeded this threshold were then la-
beled as multiunit spike events, and the corresponding timestamp was
recorded for later analysis. We estimated multiunit rate by counting the
number of multiunit events during a 400 ms decoding window immedi-
ately after target offset and multiplying by 2.5. This provided a rate esti-
mate in events/s. The duration of the decoding window was selected to
match the analysis of LFP activity and enable a direct comparison of both
signals. Similar decoding results were obtained when we varied the
threshold for detection up to 4.5 SDs.

LFP decoding. We decoded LFP array recordings from single trials to
predict the saccade movement goal from one of eight potential locations.
The decoding algorithm contained three major stages: preprocessing,
feature extraction and linear decoding (Fig. 2). During preprocessing
(Fig. 2a), LFP traces from each trial are transformed from the time do-

main to the frequency domain and reshaped into an Nch � Nf �
1-element row vector, Xtrial. This sample vector is then projected onto a
Template matrix, M, during the Feature Extraction stage (Fig. 2b). The
Template contains the first N modes (typically, 30) of a previously ana-
lyzed training dataset, and serves the function of reducing the dimen-
sionality of Xtrial to a set of features that capture most of the variance in
the original high-dimensional space.

The scatter plot shown in Figure 2b illustrates how artificially gener-
ated sample data from eight target classes (represented by different
colors) might be projected onto a two-dimensional subspace. This pro-
jection reveals tightly clustered samples from a few of the classes, which
might be useful for decoding purposes. The poorly clustered samples
may not be distinguishable in this subspace, but further projection of the
training data onto additional modes may reveal clear boundaries in a
higher dimensional space.

Features were calculated from memory delay activity during a 400 ms
window beginning immediately after the target cue was extinguished. To
limit the influence of the evoked response due to target offset, we sub-
tracted the mean waveform across trials from the activity before subse-
quent spectral analysis. Only data during the memory period, after target
offset and before the go cue, was included in the decoding procedure. The
log power spectrum from 0 –300 Hz was estimated on each of the 32
electrodes using multitaper methods, as described above. The LFP time
series was padded to give 327 frequency bins yielding a total of 32 �
327 � 10,464 features. We then used singular value decomposition
(SVD) to linearly project the signal onto a 30 dimensional subspace that
was used for classification analysis (see below). In subsequent analyses,
we explored changes in decoding performance using a variable maxi-
mum passband from 10 Hz to 10 kHz and a range of subspace dimen-
sions from 5 to 80 modes.

The 30 dimensional subspace of SVD modes was calculated from a
training dataset containing repeated interleaved presentations of all eight
saccade goals. We performed a spectral analysis of the delay activity dur-
ing all training trials, yielding a Ntrials � 10,464 dimensional rectangular
matrix, Xtrain. We then calculated the inner product between this training
matrix and itself, yielding a square training matrix, XX T, with dimension
Ntrials � Ntrials. Finally, we performed a singular value decomposition of
the square training matrix:

�XXT�train � USV. (1)

The spectral modes of the training data were calculated by projecting the
transpose of the rectangular training matrix onto the first 30 right singu-
lar vectors of the SVD:

M � XtrainV1 . . . 30. (2)

Linear Decoding occurs at the final stage of the algorithm (Fig. 2c). De-
coding of the target location on each trial proceeds by calculating a
10,464 element spectral array, Xtrial, from activity during the memory

1 2 3 4 5 6 7 8
Target 3 Target 4

Projected Training Data:

a b c

Figure 2. Decoding algorithm. a, Preprocessing. Multielectrode voltage traces are sampled during the memory delay interval on each trial and converted to the spectral domain. b, Feature
extraction. Spectral estimates are projected onto a Template matrix, M, to map them from an Nch � Nf dimensional space onto a lower-dimensional space of Nmodes. M is constructed from the modes
of a previously observed training dataset, which are calculated using the SVD. In this panel, the black dot illustrates how data from a single trial can be projected onto a 2-dimensional subspace that
optimally separates most target classes. c, Linear decoding. Linear discriminant analysis is then used to project trial data onto an 8-dimensional subspace that optimally separates data sampled from
each target class. We then convert the 8-element array into a set of probabilities. Finally, the maximum likelihood is used to predict the location of the remembered target.
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epoch (300 –700 ms after cue onset), projecting this array onto the 30
spectral modes described above, and performing a linear discriminant
analysis (Duda et al., 2000) to classify which target is most likely given the
test data:

Pr(Decode � Targeti) � f�wiXtrialM�, (3)

where wi is a projection matrix that is used to optimally discriminate
whether or not Xtrial was drawn from the “Target i” class, and the func-
tion f(x) is a nonlinear mapping from the discrimination subspace onto a
probability value for each predicted location, which we treat as the Prob-
ability of Decoding Targeti from a trial sample. After estimating this
probability for all eight targets, an argmax operation is applied to identify
the most likely decoding classification. The decoded target direction is
then used to predict where the monkey is planning to move his eyes. We
used the “classify” command in Matlab to construct a simple linear de-
coder from the training data and a corresponding array of saccade target
labels. Classifier performance estimates were bootstrapped using leave-
one-out cross-validation. Model performance during each experimental
session was summarized by the mean correct performance averaged
across all movement goals, and by a confusion matrix quantifying the
probability of predicted target directions, conditioned on all observa-
tions within each target class.

LFP decoding by spectral band. To decode movement plans for specific
frequency bands, we calculated the mean LFP power in the spectral range
of interest on each channel, yielding 32 features on each trial. Then we
used SVD to identify the modes of this reduced-dimensionality dataset
before applying the previously described decoding algorithm. Typically,
maximum performance was achieved using five modes. It is important to
note that these modes reflect spatial patterns of activity across the 32-
channel array in a limited spectral band, rather than high-dimensional
structure in a 10,646-dimensional channel-frequency feature space.

Multiunit rate decoding. To decode movement plans from multiunit
firing rate estimates, we used data samples with 32 features, representing
the multiunit firing rate observed on each electrode during a given mem-
ory epoch. This reduced-dimensionality information was then used in
place of the 10,464-dimensional LFP data in the linear decoding proce-
dure described above.

Decoding at registered depths. To study decoding performance at cor-
responding cortical depths across the array, we developed a procedure for
constructing “virtual” sessions from discontinuously recorded data. Af-
ter choosing a specific registered depth for study, we identified the ses-
sion during which each electrode was closest to this location and selected
the corresponding neural data from that channel and recording day.
Typically, neural data were drawn from 5 to 10 unique sessions, and all
selected channel data were 	200 �m from the target depth. Finally, we
grouped voltage traces from all 32 channels to create virtual trials, such
that all 32 traces assigned to a given trial were associated with the same
cue location in their original recording sessions. Throughout this study,
we use the term “registered cortical depth” when describing virtual ses-
sion data, and “mean electrode depth” to describe the mean absolute
depth of electrodes in simultaneously recorded data. It is important to
note that both of these terms refer to the depth in cortical tissue and may
not reliably correspond to depth within the cortical sheet. Although the
microdrive was implanted approximately normal to the gyral surface in
both animals, some electrodes may have penetrated sulcal banks and
remained in the same cortical layer over a span of several millimeters.

N-channel performance estimation. We studied the influence of chan-
nel count, Nchannels, on decoding performance by randomly selecting
subsets of channels from the same experimental session when the analysis
called for Nchannels 	 32. When the analysis called for Nchannels 
 32 we
pooled channel data from consecutive experimental sessions. Decoding
performance reported for Nchannels 	 32 data are averages over classifiers
constructed from 20 randomly selected subsets of channels. Reported
data are the maximum performance observed by building decoders using
from 5 to 80 modes of the training dataset. In general, it is necessary to
increase the number of degrees of freedom to improve performance
when Nchannels 
 32.

Pairwise correlation analysis. We investigated the relationship between
electrode separation and decoding performance using pairwise LFP cor-

relation as a linking variable. This approach is based on the intuition that
pairwise correlation should approach zero as electrodes approach infi-
nite separation and one as they converge to a single point in space. By
extension, we expect decoding performance to drop as electrodes con-
verge and the information content drops to that of a single location. We
incorporated these assumptions into the two-step procedure described
in Equations 4 –7 below. In the first step of our analysis, we linearly
combined 32 channels of LFP data from a single session to yield the mean
LFP correlation level that would be expected at a specific mean electrode
separation. After mean-subtracting and normalizing all 32 LFP traces to
have the same SD, we chose a reference channel from the array as the
physical point in space toward which all other electrodes would be virtu-
ally shifted. Then we applied the following series of “blending” transfor-
mations to the remaining 31 “test” channels to yield the increased mean
pairwise correlation that would be expected as all electrodes converged
toward the reference point:

Testi�t� � Testi�t� � �1 � � � �i�t� � �� (4)

Testi�t� � Testi�t� � �1 � � � Reference�t� � ��, (5)

where � is the desired mean pairwise correlation and �i(t) is a Gaussian-
distributed stochastic process with property ��i(t) � �i(t) T� � 0 that is
generated randomly for each test channel. As the value of � increases,
Equation 4 destroys channel-specific information while Equation 5 re-
shapes the test signal to look more like the reference signal. Equation 4
incorporates the biophysical assumption that electrical potentials decay
in amplitude and are increasingly corrupted by noise with increasing
distance from a point source. Put differently, as a test electrode is moved
closer to the reference point and further away from its original location,
the component of the LFP that derives from the original recorded wave-
form should look progressively weaker and noisier. Equation 5 incorpo-
rates our assumption that the test signal should look more like the
reference waveform as it approaches this location.

For each choice of reference channel, this algorithm was applied to all
trial data for the other 31 test channels. Then we trained a linear decoder
on the blended data to quantify decoding performance at the desired
correlation level. This procedure was repeated iteratively, using each
channel as the reference, to limit bias from any one cortical site in our
final results. Each decoding performance value reported in the text is an
average over all 32 runs of this analysis. Each pairwise correlation value
reported in the text was calculated directly from the blended data.

After calculating mean decoding performance versus mean pairwise
correlation, the second step of our procedure used a simple model to map
correlation values onto electrode distances. This model was motivated by
experimental measurements of this relationship by (Destexhe et al.,
1999) and more recently by (Eggermont et al., 2011), which suggest the
following relationship:

Distance � A � ln(�). (6)

The parameter of this model is determined by the mean pairwise corre-
lation observed in our original untransformed data and the fixed 1.5 mm
distance between adjacent electrode pairs.

A � ln(�original)/1.5. (7)

We used this model to map pairwise correlation values in our blended
data onto estimated electrode distances. This enabled us to plot mean
decoding performance against estimated distance.

Results
To optimize the performance of a neural decoder for neuropros-
thetic control, it is important to understand the functional orga-
nization of movement plans as a function of cortical depth. We
investigated this problem by training two adult male rhesus ma-
caques (Macacca mulatta) to perform a memory-guided saccade
task (see Materials and Methods). Both animals were then instru-
mented with a circular recording chamber system and implanted
with a chronic 32-channel microdrive over prearcuate cortex
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(Fig. 1). The span of the multielectrode
array covered the frontal eye fields (FEF)
and dorsolateral prefrontal cortex
(dlPFC) in both animals.

Semichronic microdrive
recording stability
We recorded 42 behavioral sessions over a
span of 59 post-implantation days in
Monkey A, and 56 sessions over 68 d in
Monkey S. The microdrive provided sta-
ble recordings of MUA and LFP signals
over the entire post-implantation interval
in both animals (Fig. 3). Changes in the
signal variance across consecutive record-
ing days typically reflected the advance-
ment of electrodes into more active zones of cortex. We did not
observe a sustained influence of post-implantation time on the
quality of spike recordings (Fig. 3aii) or MUA variance in either
animal (Fig. 3b). Normalized variance was used to control for
differences in signal variance across electrodes, for example due
to differences in electrode impedance. For Monkey A, average
normalized MUA variance did not change from the beginning to
the end of the experiment (0.49 � 0.01 SEM during the first and
last 20 d), while average normalized LFP variance showed a mod-
erate decrease of 0.03 (0.48 � 0.01 SEM during the first 20 d vs
0.45 � 0.01 SEM during the last 20 d). For Monkey S, average
normalized MUA variance increased by 0.01 from the beginning
to the end of the experiment (0.46 � 0.01 SEM vs 0.47 � 0.01
SEM), while average normalized LFP variance increased by 0.11
(0.33 � 0.01 SEM vs 0.44 � 0.03 SEM). The sustained increase in
LFP variance after day 40 in Monkey S corresponds to mean
electrode depths 
2 mm, likely outside the gray matter of the
superficial prearcuate gyrus.

Depth dependence of LFP decoding performance
We mapped the functional organization of movement plans as a
function of cortical depth by decoding 32-channels of simultane-
ously recorded neural activity from each behavioral session. We
used a linear, multivariate spectral decoding algorithm to decode
movement direction (1 of 8 possible directions) from single trials
(Fig. 2; see Materials and Methods). We first present the perfor-
mance of our decoding algorithm by generating confusion ma-
trices for superficially recorded sessions in both animals (Fig. 4a;
Monkey A: 88 trials, median depth � 0.126 mm; Monkey S: 247
trials, median depth � 0.408 mm). These matrices plot the prob-
ability of predicted target directions, conditioned on all observa-
tions within each target class. Cells along the diagonal indicate the
probability of correct predictions, while off-diagonal cells indi-
cate errors. In both monkeys, decoding errors typically predicted
directions that were similar to the actual direction. Overall de-
coding performance showed a strong bias toward contralateral
(leftward) directions in both animals (Fig. 4b), consistent with
previously observed workspace effects in macaque frontal cortex
(Funahashi et al., 1989). Mean decoding performance across all
targets is 83% for both animals.

The solid black traces in Figure 4c show mean decoding
performance across all eight targets for each recording session
in both monkeys. These data are reported as a function of
mean absolute electrode depth across 32 channels of simulta-
neously recorded channel data, where zero represents the site
at which spiking activity was first observed on each channel.
Therefore, negative depths correspond to locations above the

cortical surface. The extent of superficial depths studied dif-
fered between animals due to differences in the recording protocol
(see Materials and Methods). Peak decoding performance is
83% in both animals, and the corresponding “best” sessions
are shown in the preceding panels (Fig. 4b). Since our decod-
ing algorithm achieves these results by operating on the power
magnitude at each LFP frequency, and otherwise discards timing
information contained in the phase, we reasoned that perfor-
mance would be improved or at least maintained by eliminat-

a b

Figure 3. Post-implantation recording stability. ai, Mean electrode depth relative to the top of cortex for each post-
implantation day in Monkey A (thin line) and Monkey S (thick line). aii, Mean action potential waveforms for isolated single units
(black lines) and threshold-crossing noise events (gray lines) recorded on a single channel in Monkey A (top) and Monkey S
(bottom) during the post-implantation period. b, Normalized variance of MUA (i) and LFPs (ii) recorded across the array in Monkey
A (thin line) and Monkey S (thick line) during the post-implantation period.

a

b

c

Figure 4. LFP spectral decoder performance versus depth. a, Confusion matrices showing
the joint distribution of predicted and observed target locations for one superficial recording
session in Monkey A (i) and Monkey S (ii). In each panel, arrows pointing to the left indicate
contralateral locations, and ipsilateral locations are to the right. b, Probability of correctly de-
coding each target for Monkey A (i) and Monkey S (ii) in the sessions shown above. c, Mean LFP
decoding performance across all eight targets during the Memory epoch as a function of mean
electrode depth in Monkey A (i) and Monkey S (ii). Solid line, Simultaneously recorded data.
Dotted line, After shuffling channel data within each target category to destroy temporal cor-
relations. In all panels, horizontal dotted lines indicate chance performance.
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ing trial-specific correlations in LFP power across the array.
To study this question, for each electrode, we shuffled LFP
traces across trials within each target class. This procedure
maintains the mean power across the array for each target
while destroying correlations in power between electrode
pairs across trials. The dotted traces in Figure 4c show mean
decoding performance using shuffled data. These results are
generally comparable to performance achieved using un-
shuffled data, shown by the solid traces in Figure 4c. Decoding
performance using shuffled data is significantly less than per-
formance using unshuffled data at 5% of sampled depths in
Monkey A (n � 40 depths ranging from �0.2 to �1.5 mm, p 	
0.05) and 33% of sampled depths in Monkey S (n � 45 depths
ranging from �1 to �3 mm, p 	 0.05). The average decrease
in performance across all depths by shuffling is �0.05 � 0.01
SEM in Monkey A and �0.11 � 0.02 SEM in Monkey S. These
results demonstrate that LFP power estimates can be drawn
from different trials with only a 5–10% expected decrease in
performance. The results also suggest that correlations be-
tween LFP power on different channels in these data do not
impact performance, which we will examine in more detail
below.

LFP decoding varies with recording depth more than
multiunit decoding
The data in Figure 4c hint at a trend toward decreasing perfor-
mance with lower depth. However, since different electrodes in
the array typically were advanced by different amounts each day,
the dependence of decoding performance on mean electrode
depth across the array is potentially misleading. This is because
not all electrodes were registered to the same offset from zero
cortical depth during each recording session. To study the repre-
sentation of movement goals at corresponding depths across the
array, we resampled data from each animal to create virtual ses-
sions. Each virtual session was constructed by grouping 32 LFP
traces that were recorded at the same cortical depth and for the
same target at all locations in the array, but which may have been
drawn from different recording sessions. This approach can de-
stroy correlations in activity by pooling discontinuously recorded
channel data, and therefore is comparable to the previously re-
ported shuffled analysis.

We studied the mean decoding performance at registered cortical
depths in both monkeys (Fig. 5a) for the following target categories:
all eight targets (black lines), three targets in the contralateral hemi-
field (red lines), and three targets in the ipsilateral hemifield plus two
on the vertical axis (blue lines). We present decoding performance
for both hemifields to quantify the strength of workspace effects in
this region of the brain. In general, this is important for understand-
ing the factors limiting overall decoding performance, and can help
guide the design of more effective recording and decoding strategies.
In Monkey A, peak performance across all eight targets is 80% at
�0.10 mm and minimum performance is 28% at 1.25 mm (Fig.
5ai). The data in this panel show a substantial decrease in perfor-
mance at deeper cortical sites. In Monkey S, we explored a broader
range of depths, from �1 mm above the cortical surface to �3 mm
into the white matter (Fig. 5aii), and recovered similar results: peak
performance across all eight targets is 71% at 0.50 mm and mini-
mum performance is 15% at �0.70 mm above the zero point, and
20% at 2.90 mm below the zero point. The data from Monkey S
show relatively poor LFP decoding performance at surface cortical
locations, which increases as electrodes enter superficial cortex and
then decreases at deeper cortical sites. In both panels, decoding per-
formance is typically much better for contralateral targets than ipsi-

lateral targets. Averaged across all registered depths, contralateral
LFP decoding performance is 0.20 � 0.12 SEM (n � 60 depths)
higher than ipsilateral performance in Monkey A and 0.09 � 0.10
SEM (n � 60 depths) higher in Monkey S.

To establish a quantitative link between LFP and MUA decod-
ing performance at corresponding depths, we repeated the above
analysis for MUA by adapting our decoding algorithm to operate
on a feature vector of 32 multiunit firing rate estimates on each
trial (Fig. 5b). In Monkey A (Fig. 5bi), peak MUA decoding per-
formance across all eight targets is 80% at �0.10 mm and mini-
mum performance is 28% at 1.25 mm. The data in this panel
show a decrease in performance at deeper cortical sites, similar to
the trend in Figure 5ai. In Monkey S (Fig. 5bii), peak MUA de-
coding performance across all eight targets is 71% at 0.50 mm and
minimum performance is 15% at �0.70 mm above the zero
point, and 20% at 2.90 mm below the zero point. These data show
the same general trend observed in Figure 5aii, including the
relatively poor MUA decoding performance at surface cortical
locations, which increases as electrodes enter superficial cortex
and then decreases at deeper cortical sites. Averaged across all
registered depths, contralateral MUA decoding performance is
0.19 � 0.06 SEM (n � 60 depths) higher than ipsilateral perfor-
mance in Monkey A and 0.13 � 0.13 SEM (n � 60 depths) higher
in Monkey S.

The above analysis demonstrates that LFPs and MUA are most
informative about eye movement goals and yield comparable
decoding performance at superficial cortical depths. To under-
stand the relative decoding performance of LFP and MUA activ-
ity at superficial and deep cortical sites, we performed a spectral

a

b

Figure 5. Decoding performance at registered depth. In all panels, horizontal dotted lines
indicate chance performance. a, Mean LFP spectral decoding performance across all eight tar-
gets during the Memory epoch as a function of registered cortical depth in Monkey A (i) and
Monkey S (ii). Traces show mean performance across three contralateral targets (red), three
ipsilateral and two midline targets (blue), and both sets of locations pooled together (black). b,
Same analysis presented for the multiunit firing rate decoder.
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decoding analysis that systematically var-
ies the maximum passband frequency,
Fmax (Fig. 6ai,bi). In contrast to the pre-
ceding multiunit rate analysis, this spec-
tral analysis treats the MUA signal as a
continuous voltage signal, rather than a
sequence of discretely thresholded events.
At superficial sites in both animals, decod-
ing performance reaches its maximum
value when Fmax is increased to 300 Hz
(the upper bound used here to filter LFP
signals from raw data). Interestingly, in-
clusion of multiunit power at frequencies
up to 1 kHz does not yield any perfor-
mance improvement. Similar results for
multiunit signals from 1 kHz to as high as
10 kHz were also observed (data not
shown). This indicates that the informa-
tion conveyed by MUA through high-frequency oscillations is
consistent with LFP activity when decoding eye movement goals
from activity at superficial cortical depths.

The performance similarity between LFP and MUA is greatest
at superficial depths and is not present at deep sites. At deep sites
(�1 mm below the superficial sites in both animals), decoding
performance continues to improve as Fmax increases 
300 Hz.
To enable a more direct comparison of these superficial and deep
sites, we rescaled the corresponding 8-target mean decoding per-
formance profiles to range from 0 to 1 (Fig. 6aii,bii). The vertical
distance between these rescaled traces indicates that LFPs contain
more information about movement goals at superficial sites than
at deep sites. However, to maximize decoding performance at
deep cortical sites, a larger passband that recovers multiunit spik-
ing is required. Since LFP decoding performance decreases more
substantially than multiunit decoding performance at deeper
sites, it is unlikely that LFP activity above �100 Hz strongly re-
flects multiunit activity.

Variations in LFP decoding with electrode spacing and
electrode number
The spacing of electrodes in an array is likely to influence the
correlation structure of recorded neuronal activity, which may in
turn constrain decoding performance. To understand how LFP
decoding performance is influenced by correlated activity across
the array, we examined how 8-target decoding performance in
the best performing session varies as a function of the spacing
between electrodes in the recording array (Fig. 7; see Materials
and Methods). We began by calculating the mean pairwise LFP
correlation across the array at 1.5 mm spacing, and then reshaped
LFP waveforms to mimic the correlation structure that would be
expected as electrodes are drawn progressively closer together.
Using simultaneously recorded data from the optimal recording
session in each animal, we artificially increased these correlations
in sequential rounds and calculated decoding performance in
each case (Fig. 7a). As expected, when LFP correlations ap-
proached 1, LFP decoding performance approached the perfor-
mance obtained with a single electrode.

We established a quantitative connection between decoding
performance and electrode spacing using a simple model that
maps pairwise LFP correlation onto estimated recording elec-
trode separation (see Materials and Methods). By plotting mean
decoding performance versus estimated electrode spacing in
mm, we were able to identify the spacing at which performance
decays to 95% of the value observed at 1.5 mm (Fig. 7b): 0.35 mm

in Monkey A and 1 mm in Monkey S. These results suggest that
decoding performance would not be strongly affected by elec-
trode spacing slightly 	1.5 mm. However, when 32-channel
electrode spacing goes 	0.5–1 mm, 8-target LFP decoding
performance falls significantly.

a b

Figure 6. Spectral decoding performance versus maximum passband and registered depth. In all panels, horizontal dotted lines
indicate chance performance. a, LFP decoding performance versus maximum passband for contralateral (red) and ipsilateral (blue)
targets (see Materials and Methods). Black trace shows mean performance across all eight targets. Solid lines show data from a
superficial recording session (mean depth: 80 �m for Monkey A, 576 �m for Monkey S). Dotted lines show data from a deep
recording session, �1 mm below the superficial site (mean depth: 761 �m for Monkey A, 1981 �m for Monkey S). i, Performance
curves for Monkey A. ii, Mean performance curves from i after rescaling to range from 0 to 1. bi, ii, Same analysis presented for
Monkey S.

a

b

c

Figure 7. Optimizing multielectrode array configuration. In all panels, horizontal dotted
lines indicate chance performance. a, Mean LFP decoding performance across all eight targets
versus mean pairwise correlation at a superficial recording site in Monkey A (i) and Monkey S
(ii). b, Predicted relationship between mean pairwise electrode separation and mean decoding
performance in Monkey A (i) and Monkey S (ii), based on a model that maps pairwise correla-
tion onto electrode distance (see Materials and Methods). Vertical gray bar indicates the dis-
tance at which decoding performance decays to 95% of its peak value. c, LFP decoding
performance across eight targets versus number of channels in training data for Monkey A (i)
and Monkey S (ii).
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We reasoned that increasing the number of channels might
help to increase performance in the presence of strong pairwise
correlation structure. To study this problem, we varied the num-
ber of channels in the analysis from 4 to 128 by selecting channel
data from the best-performing session (when Nchannels � 32), or
by pooling channel data across this and preceding/following ses-
sions when Nchannels 
 32). We observed that increasing the
number of channels significantly increases performance in both
animals (Fig. 7c). In both animals, performance saturates at a
maximum value as the number of channels is increased from 32
to 128. Although the performance improvement above 32 chan-
nels is negligible for Monkey A, Monkey S continues to show
improved decoding performance for ipsilateral targets as the
number of channels increases to 128.

Spectral band contributions to decoding performance
Our spectral decoder was designed to extract the most relevant
information for decoding from a broadly defined frequency spec-
trum, without making a priori assumptions about which fre-
quencies are most informative. However, to provide a more
direct connection between our analysis and previous work, we
also studied the information content of commonly studied spec-
tral bands, such as the � (6 –12 Hz), 	 (12–30 Hz) and gamma
(30 –100 Hz) bands. For each spectral band, we repeated our
decoding analysis using the mean power across the correspond-
ing frequency range on each channel (Fig. 8). Therefore, training

data were reduced to a 32 � 1 dimensional array for each trial.
Following this averaging procedure, we applied all steps of the
algorithm described previously, and calculated the maximum de-
coding performance using from 5 to 30 SVD modes to define the
feature subspace. Typically, optimal performance was observed
using only 5 modes. This analysis reveals that spectral bands 	30
Hz yield 	55% mean performance across all eight targets at
nearly all depths in Monkey A, and 	25% performance in Mon-
key S (Fig. 8ai,bi). By contrast, the gamma frequency band yields
consistently better performance, most notably in the 50 –100 Hz
band Fig. 8aii,bii), where mean performance reaches 74% in
Monkey A and 50% in Monkey S. To directly connect this anal-
ysis with the data in Figure 6, we also studied decoding perfor-
mance versus depth in higher frequency bands, including 100 –
300 Hz, 0.3–1.0 kHz, and 1.0 –3.0 kHz (Fig. 8aiii,biii). As
observed previously, the mean performance at depths �0 mm are
similar in the high LFP (100 –300 Hz) and MUA (0.3–1.0 kHz)
bands, but substantially diverge at deeper sites. Notably, the
mean performance using each spectral band at each registered
depth was not consistently higher than the performance observed
using our earlier analysis (e.g., peak performance in 100 –300 Hz
band: 74% in Monkey A, 73% in Monkey S). This suggests that no
single frequency band provides all of the useful information for
decoding, but rather, the information is distributed across a
range of frequencies.

a

b

Figure 8. Decoding performance by frequency band. In all panels, horizontal dotted lines indicate chance performance. Solid lines show mean spectral decoding performance across all eight
targets during the Memory epoch as a function of registered cortical depth. a, Decoding performance in Monkey A using the mean spectral power in spectral bands 	30 Hz (i), in the gamma
(30 –100 Hz) band (ii), and in spectral bands 
100 Hz (iii). Traces are colored according to the spectral bands shown in each panel’s inset. b, Same analysis presented for Monkey S.
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Discussion
Here we use chronically implanted movable microelectrode
arrays to decode saccade movement goals from LFP activity
recorded at different depths within the prearcuate cortex. Decod-
ing performance is best at superficial depths, proximal to the first
observed spiking activity after implantation, and LFPs and mul-
tiunit firing rates yield comparable decoding performance at
these superficial sites. At deeper cortical sites, performance drops
for both LFP and multiunit activity, and the reduction in perfor-
mance is significantly greater for LFP activity than for multiunit
firing rate. Instead of defining specific frequency bands for de-
coding, we used a spectral decoding algorithm that generates
features using a weighted average across all frequencies. By vary-
ing filter settings from 50 Hz up to 1000 Hz, we find that at
superficial sites LFP activity up to �300 Hz can be decoded to
capture almost all of the information that is available from both
LFP and multiunit activity. Importantly, however, LFP decoding
performance at deeper sites is significantly worse than decoding
the full-bandwidth signal. Finally, we use a model-based ap-
proach to derive a minimum electrode spacing constraint for
efficient LFP acquisition. It should be noted that we do not ob-
serve a globally optimal “peak” performance within any of these
parameter regimes as, for example, peak decoding performance
in depth occurs over a range of 100 –200 �m in both animals.

Previous work has shown that movement selectivity in LFP
activity may be useful for neuroprosthetic control applications.
However, the influence of cortical recording depth on system
performance was previously unknown. Earlier work decoded
LFP activity using acutely inserted electrodes (Pesaran et al.,
2002; Mehring et al., 2003; Rickert et al., 2005; Scherberger et al.,
2005; Bokil et al., 2006). More recent work has decoded LFP
activity recorded on chronically implanted, fixed geometry elec-
trode arrays (Mollazadeh et al., 2008; Zhuang et al., 2010; Bansal
et al., 2011). Due to the sampling limitations of acute recordings
and physical constraints imposed by fixed geometry arrays, these
studies were unable to systematically quantify the relationship
between decoding performance and recording depth, as we do
here using movable implanted electrodes.

Comparison between LFP and multiunit activity
The multiunit decoding performance we report compares favor-
ably with other work. We show that both LFP- and MUA-based
decoders are capable of predicting eye movement goals on a sin-
gle trial basis with comparable accuracy (1-of-8 performance:
LFP power � 70%, 80%; Multiunit rate � 71%, 80%) from 32
channels of data. Two studies have also presented results decod-
ing 1-of-8 movement goals during instructed-delay periods, per-
mitting comparisons. Scherberger et al. (2005) found that reach
direction could be decoded correctly on 97% of trials when pool-
ing recordings from 89 selected neurons and 81% when pooling
recordings from 125 LFP sites. More recent work using 96-
electrode Utah arrays in dorsal premotor cortex found that 1-of-8
movement goals were correctly decoded from spiking activity on
up to 69% or 77% of trials, depending on the duration of the trial,
and hence, the decoding analysis window (Santhanam et al.,
2006). LFP decoding performance was not reported in this study.
Although several factors differ between these experiments and
our own, the multiunit and LFP decoding performance we obtain
using 32 electrodes is broadly consistent with these reports.

A particularly interesting aspect of our results is the observed
change in decoding performance using signals with progressively
increasing bandwidths, from 50 to 1000 Hz. Varying the pass-
band of the low-pass filter permits us to study the relative infor-

mation content of LFPs and MUA as a function of recording
depth. The analysis presented in Figure 6 shows that LFP activity
at up to 300 Hz is sufficient to achieve near-maximum perfor-
mance at superficial locations, and demonstrates that analyzing
both LFPs and MUA is necessary to obtain the highest perfor-
mance when recording from deeper cortical sites. The influence
of recording depth is especially interesting when considering the
source of LFP signals in the several hundred Hz range. There is
considerable debate on the precise contributions of neural activ-
ity to extracellular potentials in the 100 –500 Hz frequency range.
Lower frequency LFP signals, below �100 –200 Hz, are generally
believed to reflect postsynaptic transmembrane potentials (Klee
et al., 1965; Mitzdorf, 1985; Buzsáki, 2006; Okun et al., 2010). The
tuning of gamma-band activity in cat V1 measured by intracellu-
lar membrane potential is closely correlated with that of spiking
activity (Azouz and Gray, 2003), which itself is associated with
rapid fluctuations in subthreshold membrane potential (Azouz
and Gray, 2008). High-frequency LFP fluctuations also likely re-
flect the leakage of action potentials and spike after potentials
into the LFP signal band (Ray et al., 2008; Ray and Maunsell,
2011), the degree to which depends on the amplitude of the ac-
tion potentials present in the extracellular recording (Zanos et al.,
2011). Since we find that the relative information content of
high-frequency LFPs signals and multiunit spiking varies signif-
icantly with recording depth, however, our data suggest that there
is not an obligatory relationship between nearby spiking activity
and high frequency �100 –500 Hz LFP activity. One possible
explanation is that high-frequency, synaptic activity within the
dendrites of pyramidal cells underlies the laminar organization of
LFP activity and is tightly linked to both spiking activity and
high-frequency LFP activity. The extent to which intracellular
potentials reflect dendritic fluctuations remains to be tested and
future work will need to examine the contribution of synaptic
potentials and spiking events to LFP signals as a function of re-
cording depth.

Comparison between LFP activity and electrocorticograms
There is increasing interest in driving a neural interface using
electrocorticogram (ECoG) activity recorded at the cortical
surface and epidurally (Felton et al., 2007; Schalk et al., 2007;
Chao et al., 2010; Moran, 2010; Slutzky et al., 2011), but thus-
far, comparisons between these signal modalities have been
limited in scope. In particular, almost all studies have not
directly compared the information contained in ECoG and
LFP activity using the same tasks, brain regions and subjects
(but see Slutzky et al., 2011). We did not record traditional
ECoG signals by placing grid electrodes on the cortical surface.
However, in one animal (Monkey S), we obtained LFP activity
as we lowered microelectrodes through the dura, pia and into
the brain. Using identical procedures across days in this ani-
mal, we found that average decoding performance at record-
ing sites superficial to the first observed spikes was �30%,
while performance at sites only 300 –500 �m deeper in the
superficial cortex was as high as 80%. These results demon-
strate that penetrating the pia and inserting electrodes as little
as 300 –500 �m into the cortex yields substantially better neu-
roprosthetic control performance than placing electrodes at
the cortical surface, even when microelectrodes are used.
While we do not know the precise depth at which electrodes
penetrated the pia and entered cortex, obtaining LFP activity
in the superficial cellular regions of cortex may significantly improve
decoding performance over cortical surface recordings.
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Workspace effects and implications for
human neuroprosthetics
Spiking activity exhibits a strong preference for contralateral vi-
sual space in macaque FEF/dlPFC (Funahashi et al., 1989), and
posterior parietal cortex (Barash et al., 1991; Scherberger et al.,
2005). Consistent with this, we find that LFP decoding perfor-
mance in frontal cortex is nearly 100% for contralateral targets,
while performance for vertical and ipsilateral targets is substan-
tially worse (Figs. 5–7). Bilateral implants may be necessary in
these regions to achieve high LFP decoding performance across
the entire workspace. By contrast, hemispheric workspace biases
are much weaker in spiking and LFP activity in motor cortices
(Georgopoulos et al., 1988; Scott et al., 2001; Cisek et al., 2003;
Rickert et al., 2005), and the representation of space for eye move-
ments is also less lateralized in humans than macaques (Kagan et
al., 2010). Therefore, LFP decoding performance using a unilat-
eral implant in human motor cortex may exceed the ipsilateral
workspace performance we report here.

Caveats and limitations
Several caveats and limitations should be kept in mind before
extrapolating our results to neuroprosthetic control. First, our
analysis was performed off-line using activity before executed
movements. Since the upcoming movement may influence per-
formance, future work should study performance on-line with-
out movements. Second, we studied an oculomotor/cognitive
area. The depth dependence of activity in areas involved in skel-
etomotor movements needs to be examined. Third, we examined
the encoding of goals in a two-dimensional saccadic workspace.
While saccades represent a model that captures many features
and challenges of this problem, studies that involve more com-
plex reach-and-grasp movements are needed. Finally, the overall
performance of neuroprosthetic control needs to be evaluated in
a broader context including reliability and robustness. The reli-
ability and robustness of spiking signals have been the focus of
many reports (Williams et al., 1999; Szarowski et al., 2003; Biran
et al., 2005; Polikov et al., 2005; Suner et al., 2005; Dickey et al.,
2009; Simeral et al., 2011), but LFP and ECoG signals remain
relatively poorly studied (but see Chao et al., 2010). Despite these
limitations, this study builds substantially on previous work by
demonstrating the strong influence of depth on decoding perfor-
mance, and exploring strategies for optimizing performance us-
ing variable passband, channel count and density.
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